CALCULATION OF CLOSE INTERACTION BETWEEN DROPS, With internal circulation and slip effect taken into account*

A.Z. ZINCHENKO

Abstract

An axisymmetric problem of motion of two spierical drops in a viscous mecium is studied in the Stoxes approximatior. The drop viscosities are assumed finite bat large, compared with the viscosity of the surrounding medium. A smali degree of slippage is also aliowed at the sphere surfaces. An asymptotic solutior of the problem. is constructed, aplicabie to the case when the gap cetween the sphere surfaces is small. I: particuiar cases when slippage or intermal circulation are absent, the solution agrees with the rosuits of / / , 2/.

The asymptctic solution of the axisymmetric problem constructed in /l/ for the drop viscosities large comapared with the viscosity of the surrounding medium, holds only for very small values of the dimerisionless gap isee/l/l. The solution conscructed here is found to have a wider range of applications. The case when the viscosities of the particles are large comparei with the viscosit \because of the medium, is ofter encountered when the drops move in a jusenis medium, and in tris case the molocular eftects must be taken into account when the size of the gap becomes comperable with the Eree pait of the gas molecules. A strict approach basea on solving the Boltzran equaticr. does not exist, therefore the present paper uses a model of a flow of continuous medium with slippage at the sphere surfaces which, strictly speaking, folds only for small vadues of the Knudsen number calculated for the gap size.

1. Formulation of the problem. Tho liquid spheres have radii a and da dynamiz viscosities μ_{1} ard μ_{2}, and move aiong the inre drawn through the centers, with velacities vi and $V_{\text {. }}$, through the medium of viscosity \quad. . The Reynolds numbers ard the relative velocity of motion of the spheres are assumed smali, and the problem is studied within the framework fer the quasi-stationary stokes equations. We usu, as the boundary conditions, the abserce of fow of the liquids across the sphero sirfaces, the continuity of tangential stresses and conditions of slippage

$$
\beta_{i}\left(v^{e}-v^{\prime}\right) \cdot \tau-p_{n}^{e} \cdot \boldsymbol{r}
$$

Here r is a vertor tangent to the surface of the sphere of radius a_{i}, $\boldsymbol{\beta}_{\mathrm{i}}$ are the slippage coefficients, P_{n} and , are the liquic stress and velocity vectors and n is the direction of rhe cutward normal to the sphere surface. The superscripts i, $i(i=1,2)$ denote the quantities in the region between the spheres and inside the sphere of radius $a_{\text {, }}$ respectively. The surface tension at the interface between the liquids is ussumed to be sufficiently large, and this nakes it possible to neglect the deviationof the particlesform from the spherical andonit from our discussion the bourdary condition of the contimuty of mormal stresses.

Since the problem is linear, we car write the nydrodynamic forces in the form
 The viscosity of the drops is assimed constant but large, comeared with the viscosity re the medium, and the siopage is assumed smail

$$
A_{i}=\mu_{i}: \mu_{e}>1, \mu_{e} \cdot\left(a_{n} a_{:}\right)<1,:=1.2
$$

[^0]In the case of drops moving through a gaseous medium, the slippage coefficients are given by $\mu_{e} / \beta_{i}=A_{i} l$. Here l is the length of free path of the gas molecules. The coefficients A_{i} are of the order of unity, and connected in the usual manner with the accommodation coefficients. Thus the last condition of (1.2) implies the smallness of the Knudsen number calculated for the sphere radii. Since the coefficients λ_{12}, A_{22} remain finite when the spheres are in contact, it follows that the values of these coefficients in (1.2) differ little, right up to the moment when the spheres touch, from the corresponding values $\lambda_{12}{ }^{s}, \lambda_{22}$ for solid spheres calculated in $/ 4 /$ for the case when the slippage effects are absent. Therefore it is sufficient to put $\mathbf{V}_{2}=0$ and investigate the asymptotics of Λ_{11} for small gaps, with (1.2) taken into account.
2. General structure of the exact solution. First we shall establish the general structure of the exact solution obtained without assuming that the gap is small and (1.2) hold. We pass from the cylindrical coordinates z, ρ (the $=-$ axis is directed along the lines connecting the sphere centers, from sphere a_{2} towards sphere a_{1}, and the ρ-axis is perpendicular to the line connecting the centers, to the bispherical coordinates

$$
z=\frac{c \operatorname{sh} \eta}{\operatorname{ch} \eta-\mu}, \quad \rho=\frac{c \sin \xi}{\operatorname{ch} \eta-\mu}, \quad \mu=\cos \xi, \quad 0 \leqslant 5 \leqslant \pi
$$

The parameter c and the quantities $\eta_{1}>0, \eta_{2}<0$ are determined so that the sphere of radius u_{2} is a surface $\eta=\eta_{i}=$ const, and we do it by setting

$$
\begin{equation*}
\operatorname{ch} \eta_{1}=\frac{(1+\varepsilon)(1+h)+h \mathrm{e}^{3} / 2}{1+k+k}, \quad \operatorname{sh} \eta_{2}=-k \operatorname{sh} \eta_{1}, \quad c=a_{1} \operatorname{sh} \eta_{1} \tag{2.1}
\end{equation*}
$$

where $\varepsilon \alpha_{1}$ denotes the gap between the sphere surfaces. Using the general solution/5/ of the Stokes equation is bispherical coordinates, we shall seek the stream function in the form

$$
\begin{align*}
& \Psi=-2^{-1} \cdot 11_{2} c^{2}(\operatorname{ch} \eta-\mu)^{-1 / 2} \sum_{n=1}^{\infty} n(n+1) \varphi_{n}(\eta) Q_{n}(\mu) \tag{2.2}\\
& \varphi_{n}{ }^{2}(\eta)=E_{n} \operatorname{ch}(n-1 / 2) \eta+F_{n} \operatorname{sh}(n-1 / 2) \eta+G_{n} \operatorname{ch}\left(n+h_{2}\right) \eta+H_{n} \operatorname{sh}(n+9 / 2) \eta_{2} \quad \eta_{2} \leqslant \eta \leqslant \eta_{n} \\
& \varphi_{n}{ }^{i}(\eta)=A_{n}{ }^{i} \exp [-(n-1 / n)|\eta|]+B_{n}{ }^{i} \exp [-(n+3 / 2)|\eta|], \quad|\eta| \geqslant\left|\eta_{i}\right|, \quad i=1,2
\end{align*}
$$

Here v_{1} is the projection of the velocity v_{1} on the z-axis, and $l_{n}(\mu)$ are the Gegenoauex polynomials. Let us put $\varphi_{n} *(\eta)=\varphi_{n}(\eta)$ near the sphere $\eta=\eta_{2}$ and $\varphi_{n} *(\eta)=\varphi_{n}(\eta)-R_{n}(\eta)$ near the sphere $\eta=\eta_{1}$, where

$$
\begin{equation*}
R_{n}(\eta)=\frac{\exp [-(n+3 / 2) \eta]}{2 n+3}-\frac{\exp [-(n-1 /,) \eta]}{2 n-1} \tag{2.3}
\end{equation*}
$$

Then the boundary conditions will assume the form (the plus sign corresponds to $i=1$)

$$
\begin{gather*}
\varphi_{n}^{* e}=\varphi_{n}^{* i}=0, \quad d^{2} \varphi_{n}^{* e} / d \eta^{2}=\lambda_{i} d^{2} \varphi_{n}^{* i} / d \eta^{2} \tag{2.4}\\
\frac{\mu_{e}(\operatorname{ch} \eta-\mu)}{c \beta_{i}} \sum_{n=1}^{\infty} \frac{d^{2} \varphi_{n}^{* e}}{d \eta^{2}} n(n+1) Q_{n}(\mu)+\sum_{n=1}^{\infty}\left(\frac{1}{\lambda_{1}(2 n+1)} \frac{d^{2} \varphi_{n}^{* e}}{d \eta^{2}} \pm \frac{d \varphi_{n}^{* e}}{d \eta}\right) n(n+1) Q_{n}(\mu)=0, \quad \eta=\eta_{i}, i=1,2
\end{gather*}
$$

Using the second relation of (2.4), we reduce the boundary condition of slippage to an equation containing no internal functions $\varphi_{n}{ }^{i}(\eta)$, and this appears to be important in determining the asymptotics of the solution. The conditions (2.4) can be reduced to two difference equations in e.g. E_{n} and F_{n}. Solving the equations obtained in this manner we find, that the stream function can be determined in all regions of flow. In the case of solid spheres with boundary slippage conditions, an exact solution was obtained in $/ 6 /$.
3. Asymptotic solution. Let us find the inner expansion for the stream function ψ^{e} valid in the region of the small gap separating the sphere surfaces, since the region determines the singular part of λ_{11}. The case of contact between the spheres corresponds to the passage to the limit

$$
\begin{equation*}
\varepsilon, \eta_{1}, \eta_{2} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Let us set

$$
\left.\alpha_{i}=\mu_{\mathrm{e}}\left(\varepsilon a_{2} \beta_{2}\right), p_{1}-\dot{A}_{1} \downarrow \ddot{z}_{k}(1)=k\right): 1.2
$$

and assume that the quantities k, α_{i} and p_{i} are fixed in tine imiting gassage ?. In. Intrini. ing the variable $\sigma=\left(\eta \eta_{1}+k\right)(1-i k)$. we note that the inner region oorrespords to $\alpha \sim 1.1-\mu \sim$ 1. Fixing the value of σ, replacing the expressionf for $f^{\circ}(\eta)$: n (2.2) by :af equ:valo:
 (2.4), we find

$$
\begin{aligned}
& \Psi^{e} \simeq-V_{1} a_{1}^{2} \eta_{1}^{22^{-1 /}}(1-\mu)^{-V_{2}} \sum_{n=1}^{\infty} n(n+1) \Psi_{n}\left(\bar{n} Q_{n}(\mu)\right. \\
& \Psi_{n}(\sigma)=A_{n} \sigma^{3}+B_{n} \sigma^{2} \div C_{n} \sigma+D_{n} \\
& \Psi_{n}(1)=-4(2 n-1)^{-1}(2 n \div 3)^{-1}, \quad \Psi_{n}(0)=0 \\
& \alpha_{i}(1-\mu) \sum_{n=1}^{\infty} n(n+1) \Psi_{n}^{\prime \prime}\left(\sigma_{i}\right) Q_{n}(\mu)+2 \sum_{n=1}^{\infty} n(n+1)\left[\frac{\Psi_{n}^{\prime \prime}\left(\sigma_{i}\right)}{\left.p_{i}(2 n+1) \pm \Psi_{n}^{\prime}\left(\sigma_{i}\right)\right] Q_{n}(\mu)=0, \quad: J_{i}, i \because 1,2}\right.
\end{aligned}
$$

!.

$$
\left(J_{1}=1, J_{2}=0\right)
$$

The above equations yield two difference equations for A_{n} ard f :

$$
\begin{align*}
& \alpha_{1}\left\{3 A_{n}+B_{n} \cdots \frac{n-1}{2 n-1}\left(3 A_{n-1}+B_{n-1}: \cdots \frac{n+2}{2 n-3}\left(3 A_{n+1}+B_{n+1}\right) \vdots+\frac{6 A_{n}+2 B_{n}}{p_{1}(2 n+1)}-2 A_{n}+B_{n}-\frac{4}{(2 n-1)(2 n-13)}\right.\right. \tag{3.4}\\
& \alpha \cdot\left[B_{n}-\frac{r-1}{2 n} B_{n-1}-\frac{n+2}{2 n+3} B_{n-1}\right] \div \frac{2 B_{n}}{(2 n+1)}+A_{n}+B_{n}-\frac{4}{12 n-1)(2 n+3)}
\end{align*}
$$

The behavior of the first term of the inner expansion fur \boldsymbol{w}^{\prime} in the region whexe it merges with the external expansion, i.e. when $\mu-1+1$, is determined by the behavior of the coefficients A_{n}, B_{n} and C_{n} as $n \rightarrow \infty$. Since the external expansion in the first approximation is the same as that for the solid spheres without slippage, we must demand that

$$
\begin{equation*}
A_{n} \sim 1_{n}-2 \quad B_{n}-\cdots 3_{n} \tag{3.5}
\end{equation*}
$$

as $n \rightarrow \infty$. The conditions (3.5) do not oontradict the system (3.4., and yield a uniaue solution.

According to /1/, the contribution of the inner region towards the nagnitude of the force $F_{1}{ }^{2}$ is, in the first approximatior, equal to

$$
-\frac{\pi \mu}{c} \int_{-1}^{1}(1-\mu) \frac{d^{3} \Psi^{e}}{d \eta^{3}} d \mu
$$

Taking into account (2.1) and (3.3), we Elmally obtain

$$
\begin{equation*}
A_{11} \simeq(1-k)^{-2}-1!\left(x_{1}, \quad x_{2}, f_{1}, p_{2}\right) \quad, \quad 4 \sum_{n=1}^{n} \frac{n i n+1) A_{n}}{\{2 n-1)(2 n+1)(2 n+3)} \tag{3.6}
\end{equation*}
$$

In the particular case when slippage is absent. ($\mu_{1}=\alpha_{2}=(i)$, we can obtain from (3.4) an axplicit expression for A_{n}. As a result we obtain

$$
\begin{equation*}
f=32 \sum_{n=1}^{\infty} \frac{\left.n(n+1)(12 n+1) p_{1} p_{2}+p_{1}+p_{2}\right)}{(2 n-1)^{2}(2 n+3)^{2}\left((2 n+1)^{2} p_{1} p_{2} \div 4(2 n+1)\left(p_{1}-p_{2}\right)-12\right)} \tag{3.7}
\end{equation*}
$$

Exuanding the general term of the series ; ; ?) into partial fractions, we can express ; ir terms of the logarithmic derivative $\psi\left(i ;\right.$ of gama function. Wher $p_{1} \mu_{2}, p$, we have iv is the Euler constant)

$$
\begin{equation*}
i=\frac{(39+7 p) p^{2}}{6(p+3)^{2}(p-3)}+-\frac{\left(1 a^{2} \mu\right.}{16\left(9-p^{2}\right)}+\frac{p^{2}\left(p^{2}-36\right)}{4(p-3)^{2}(p-3)}\left[\psi\left(\frac{3}{2}+\frac{3}{\because}\right)-\frac{8}{3}+\because \div 2103\right] \tag{3.8}
\end{equation*}
$$

When $p_{1} \neq p_{3}$, the corresponding expression is very bulky, and \quad s therefore omittea. Usiag the asymptotics of $\psi(z)$ as $z-\infty$ we find, for smail $p_{1}, p_{2} p_{1} \sim p_{2}$.

$$
\begin{equation*}
=\frac{1}{32} 9^{2}\left(p_{1}+1_{1}\right)-\frac{1}{1}: n_{1}^{2} \mid n_{1}^{2}-1_{1}^{2}: l_{1!} \tag{3.9}
\end{equation*}
$$

Taking into account (1.2) and (3.2) we find, that the formulas (3.6) and (3.9) agree with the results obtained in $/ 1 /$ for the moderate values of λ_{1} and λ_{2}. As $p_{1}, p_{2} \rightarrow \infty$, the formula (3.7) yields $i=1$, which agrees with the asymptotic solution $/ 7 /$ for the solid spheres. The values of $\Lambda_{11}{ }^{*}$ obtained from the formulas (3.6) and (3.8) are compared below with the exact values of Λ_{11} for $k=0.5, \lambda_{1}=\lambda_{2}=10$ and various

\mathbf{E}	10^{-1}	10^{-2}	$10^{-\mathbf{3}}$	10^{-4}
A_{11}^{*}	3.33	21.8	106	412
λ_{11}	4.80	23.8	109	415

In the absence of internal circulation $\left(p_{1}=p_{2}=\infty\right)$ the relations (3.3) yield

$$
\frac{\partial^{3} \Psi^{e}}{\partial s^{3}} \simeq \frac{3 V_{1} c^{2}(1+\mu)\left[2+\left(\alpha_{1}+\alpha_{2}\right)(1-\mu)\right]}{(1-\mu)\left[3 \alpha_{1} \alpha_{2}(1-\mu)^{2}+2\left(\alpha_{1}+\alpha_{3}\right)(1-\mu)+1\right]}
$$

Integrating we obtain

$$
\begin{gather*}
f=-\frac{\left(\alpha_{1}+\alpha_{2}\right)}{6 \alpha_{1} \alpha_{2}}+\frac{\varphi\left(t_{1}\right)-\varphi\left(t_{1}\right)}{12 \alpha_{1} \alpha_{2}\left(t_{3}-t_{1}\right)}, \quad t_{1,2}=\frac{\alpha_{1}+\alpha_{2} \mp \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}-\alpha_{1} \alpha_{2}}}{3 \alpha_{1} \alpha_{2}} \tag{3.10}\\
\varphi(t)=(2+t)\left[2-\left(\alpha_{1}+\alpha_{2}\right) t\right] \ln \left[t^{-1}(2+t)\right]
\end{gather*}
$$

The relations (3.6) and (3.10) generalize the results of $/ 2 /$ to the case of different α_{1}, α_{2}. Table 1

α	$p=x$	8	6	4	3	2	1
0	1000	813	766	687	623	526	361
0.1	844	711	675	614	564	484	342
0.2	-43	639	610	561	519	451	325
0.3	668	584	560	518	482	424	311
$\square .4$	611	540	520	484	453	401	299
$\square . .5$	5140	504	487	455	427	381	288

When $\%_{1} . i_{-}(3.10)$ yields $f=1$ which corresponds to the first term of the asymptotics/7/. In the general case the system (3.4) has to be solved by numerical methods. The Table gives the values of $: \times 10^{3}$ for $\alpha_{1}=\alpha_{2}=\alpha$ and $p_{1}=p_{2}=p$.

The author thanks A.M. Golovin for the interest shown.

REFERENCES

1. ZINCHENKO A.Z., Calculation of hydrodynamic interaction between drops at low Reynolds numbers. PMM, Vol.42, No.5, 1978.
2 HOCKING L.M., The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Engng Math., Vol.7, No.3. 1973.
2. HAPPEL J. and BRENNER H., Hydrodynamics at Low Reynolds Numbers. Moscow, MIR, 1976.
3. COOLEY M.D.A. and O'NEILL M.E., On the slow motion of two spheres in contact along their line of centres through a viscous fluid. Proc. Cambridge Philos. Soc., Vol.66, No.2, 1969,
4. STIMSON M., JEFFERY G.R., The motion of two spheres in a viscous fluid. Proc. Roy. Soc. A., Vol.111, No.757, 1926.
5. REED L.D., MORRISON F.A., Jr. Particle interactions in viscous flow at small values of Knudsen number. J. Aerosol. Sci., Vol.5, No. 2, 1974.
6. COOLEY M.D.A., O'NEILL M.E., On the slow motion generated in a viscous fluidby the approach of a sphere to a plane wall or stationary sphere. Mathematika, vol. 16, No.1, 1969.

[^0]: *Prikl.Matem.Meikhe:1, 45, No..i, 759-76?,1981

