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CALCULATION OF CLOSE INTERACTION BETWEEN DROPS.
WITH INTERNAL CIRCULATION AND SLIP EFFECT TAKEN INTO ACCOUNT

A.Z. ZINCHENKC

An axisymmetric problem of motion «f two spnerical drops in a viscous medium
studied in the Stoxes approximatior. The drop viscosities are assumed finite
large, compared with the viscosity of the surrounding medium. A small degree
slippage is also alliowed at the sphere surfaces. An asymptotic soluticrn of the
oroblem is constructed, applicable to the case when the gap between the sphere  sur-
faces is small. I particular cases when slippage or internal circulation are ab-
sent, the scluticn agrees with the resuits of /1,2/.

The asymptotic solutior of the axisymmetric problem constructed in /1/ for the drop viscos-
ities large comapared with the viscosity of the surrounding medium, holds only for very small

values cf the dimensionless gap i(see /1/). The solution constructed here is found to have 2
wider range of applications. The case when the viscosities of the particles are large compared
with the visccosity of the medium, is often encountered when the drops move in a JuSEenus

medium, and in this case the molecular effects must be taken 1ntc acccunt when the size of the
gap becomes comparable with the free path of the gas molecules. A strict approach based on
solving the Boltzman equaticrn does not exist, therefore the present paper uses a model of A
flow of continuous medium with slippage at the sphere surfaces which, strictly speaking, holds
only for small values of the Knudsen number calculated for the gap size.

1. Formulation of the problem. The !iquid spheres have radii & and 2. dynam
viscosities 1y and w, , and move alsng the lire drawn through the centers, with veiocities V,
and V., through the medium of viscosity p,. The Reynolds numbers and the relative velocity

of motion of the spheres are assumed small, and the problem is studied within the frameworx of
the guasi-stationary Stokes equations. We use, as the boundary corditions, the absence of fiow
of the liquids acrass the sphere surfaces, the continuity of tangential stresses ard conditions
of slippage

B, (v' - v')Ar ..pn‘.:

Here 1 is a vector tangent to the surface of the sphere of radius a;,f; are the slippage coef~-
ficients, p, and v are the liquid stress and velocity vectors and n is the direction of the
cutward normal tc the sphere surface. The superscripts ¢, i(i=1,2) denote the quantities in the
region between the spheres and inside the sphere of radius o, respectively . The surface
tension at the interface between thc liquids is assumed to be sufficiently large, and this
imakes it possible to neglect the deviaticrof the particles form from the sphexrical andomit from our
discussion the boundary condit:o:n of the centinuity of normal stresses.
Since the problem is linear, we can write the hydrodynamic forces in the form
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from the reciprocity theodrem 73/ arnd the boundary condltinns.
ared with the viscosity of ine

The last conditic: of (1.1} ;
The viscosity of the drops is assumed constant but large, o
medium, and the slippage is assumed small
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In the case of drops moving through a gaseous medium, the slippage coefficients are given by
e/ By = A;l. Here ! is the length of free path of the gas molecules. The coefficients 4; are
of the order of unity, and connected in the usual manner with the accommodation coefficients.
Thus the last condition of {1.2) implies the smallness of the Knudsen number calculated for
the sphere radii. Since the coefficients Ay, Ay, remain finite when the spheres are in con-
tact, it follows that the values of these coefficients in (1.2) differ little, right up to
the moment when the spheres touch, from the corresponding values Ay’ Ay® for solid spheres
calculated in /4/ for the case when the slippage effects are absent. Therefore it is suffic-
jent to put V,=0 and investigate the asymptotics of A, for small gaps, with (1.2} taken in-
to account.

2. General structure of the exact solution. First we shall establish the general
structure of the exact solution obtained without assuming that the gap is small and (l.2) hold.
We pass from the cylindrical coordinates 3z, p {the :-axis is directed along the lines connect-
ing the sphere centers, from sphere g, towards sphere a;, and the p -axis is perpendicular
to the line connecting the centers, to the bispherical coordinates

¢shn esing
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The parameter ¢ and the quantities ;> 90, 1, < U are determined so that the sphere of radius

is a surface n = n; = const, and we do it by setting
(148} (1 k) + ke¥2
chmy= [y Ay , shtp= —kshny, c=ashmn (2.1)

where e, denotes the gap between the sphere surfaces. Using the general solution /5/ of the
Stokes equation is bispherical coordinates, we shall seek the stream function in the form

¥ =2 — T o+ e, (00, @) (2.2)

n=i
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©n' () = Ap'exp[— (e =) [M[)+ Ba exp [~ (n + 4 )] [al>n,l, i=1,2

Here V¥, is the projection of the velocity V, on the :z-axis, and (n (W) are the Gegenbauer poly-
nomials. Let us put ¢,*(n) = ¢a(M) near the sphere n=1n and g;* M) = ¢, — Ba () near the sphere
1 == 1,, where

exp(—(r+3:)n]  exp(—(n—Y:)1]
Ry = 53 - T— (2.3
Then the boundary conditions will assume the form (the plus sign corresponds to (=1)
9, = (pn*i =0, di*/dpt=1, d2q;7l"'i fdy? (2.4)
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Using the second relation of (2.4}, we reduce the boundary condition of slippage tc an egua-
tion containing no internal functions ' (), and this appears to be important in determining
the asymptotics of the solution. The conditions (2.4) can be reduced to two difference equa-
tions in e.g. E, and Fn. Solving the eguations obtained in this manner we find, that the
stream function can be determined in all regions of flow. In the case of solid spheres with
boundary slippage conditions, an exact solution was obtained in /6/.

3. Asymptotic solution. Let us find the inner expansion for the stream function ¥¢
valid in the region of the small gap separating the sphere surfaces, since the regicn determin-
es the singular part of Ay,. The case of contact between the spheres corresponds to the passage
to the limit

€ Ny M0 (3.1
Let us set
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o = plea,B), p, = A, VI (T KL o1 2

and
ing the variable

1. Fixing the value of o, replacing the expression for 4,% (1) :n (2.2)

differential equation and applying the passage to the limit [3.1) +o the
{2.4), we find
Vi —Viemt 2 (=7 S n(n 4 1 Wa (3 U ()
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(5y =1, 3, =0)

The above equations yield two difference equations for d, ard g,
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The behavior of the first term of the inner expansion fur ¥ in the regionwhere it merges

with the external expansjion, i
ents Aq. B, and Cpn as
same as that for the sclid spheres without

.e. when u -1,

n - 00,

slippage, must demand that
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as  n o0 The conditicns (3.5) do not centradict the system (3.4, and yield a unigue sclu-
ticn
According to /1/, the contribution of the inner region towards the pagnitude 2% che
force F! 1is, in the first approximation, equal to
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Taking into account (2.1} and {3.3), we finally obtain
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In the particular case when slippage is absent (¢ = @, = (), we can obtain from (3.4} an ex-
plicit expression for A,. As a result we obtain
o\ a(n -k 1) (120 4 D) ppe 4 iyt b2 o (3.7
f=32 (2n — 1 (2n 5+ 3 {(2n + 1P pupe + 4 (20 Liip-- oy - 12}
n—=1

Exponding the general term of the series i3.7) into partlal fractions, we

assume that the quantities 4. a, and p are fixed :n the limit:ng passage :3.!1.
= (w/n; + &i(t -} k),, we note that the inner region correspords to
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Taking into account (1.2) and (3.2) we find, that the formulas (3.6) and (3.9) agree with the
results obtained in /1/ for the moderate values of &, and %. As p;, pp— %, the formula (3.7)
yields =1, which agrees with the asymptotic solution /7/ for the solid spheres. The values
of A;* obtained from the formulas (3.6) and (3.8) are compared below with the exact values
of A, for k =05, Ay =14, =10 and various ¢

[ 101 1072 10-9 10—
A%, 3.33 21.8 108 412
Ay 4.80 23.8 109 413

In the absence of internal circulation (p; = p, = o) the relations {3.3) yield

ik e (1 4 ) [2 4 (o + ) (1 — )]
33 (1 — 1) [Boges (1 — W) F 2 (e + @) (1 — p) + 1)

Integrating we obtain

(ot + @) @ (t) ~ @ (L) PR t+auFVoltal —am
f=—"%am Vaya, (2, —ty) ' 127 3a,a, (3.10)

Q) =2+ {2 — (o, + o) N 1In {71 24 0]

The relations (3.6) and (3.10) generalize the results of /2/ to the case of different a,, o,

Table 1

@ p=x 8 6 4 3 2 1
0 1000 813 766 687 623 526 | 361

0.1 844 711 675 614 564 484 | 342
0.2 743 639 610 561 519 451 325
0.3 668 584 560 518 482 424 311
A (3] 540 520 484 453 401 299
3 1 &6t 504 487 455 427 381 288

When . «.— 0, (3.10) yields /=1 which corresponds to the first termof the asymptotics /7/.

In the general case the system (3.4) has to be solved by numerical methods. The Table 1l gives
the values of X 10° for o;=w, =« and p, =p, = p.

The author thanks A.M. Golovin for the interest shown.
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